История появления компьютерной графики. История компьютерной графики в россии

Первые компьютеры использовались лишь для решения научных и производственных задач. Для того чтобы лучше понять полученные результаты, человек брал бумагу, карандаши, линейки и другие чертежные инструменты и чертил графики, диаграммы, чертежи рассчитанных конструкций. Иначе говоря, человек вручную производил графическую обработку результатов вычислений.

Довольно быстро возникла идея поручить графическую обработку самой машине. Представление данных на мониторе компьютера в графическом виде впервые было реализовано в середине 50-х годов для больших ЭВМ, применявшихся в научных и военных исследованиях. С тех пор графический способ отображения данных стал неотъемлемой частью подавляющего числа компьютерных систем, в особенности персональных.

Первоначально программисты научились получать рисунки в режиме символьной печати. На бумажных листах с помощью символов (звездочек, точек, крестиков, букв) получались рисунки, напоминающие мозаику. Так печатались графики функций, изображения течений жидкостей и газов, изображения электрических и магнитных полей.

С помощью символьной печати программисты умудрялись получать даже художественные изображения.

Настоящая революция в компьютерной графике произошла с появлением графических дисплеев. На экране графического дисплея стало возможным получать рисунки, чертежи в таком же виде, как на бумаге с помощью карандашей, красок, чертежных инструментов.

Все типы персональных компьютеров оснащены графическими дисплеями. Поэтому машинная графика стала особенно попу- лярна с распространением персональных компьютеров, начиная с 80-х гг.

Благодаря графическим возможностям ПК удалось сделать этот класс машин привлекательным для широкого круга пользователей. Стали появляться различные направления в компьютерной графике.

Научная графика . Это направление появилось самым первым. Назначение - визуализация объектов научных исследований, графическая обработка результатов расчетов, проведение вычис- лительных экспериментов с наглядным представлением их результатов.

Деловая графика . Эта область компьютерной графики предназначена для создания иллюстраций, часто используемых в работе различных учреждений. Плановые показатели, отчетная докумен- тация, статистические сводки - это объекты, для которых с помощью деловой графики создаются иллюстративные материалы. Программные средства деловой графики обычно включаются в состав табличных процессоров.

Конструкторская графика . Используется в работе инженеров- конструкторов, изобретателей новой техники. Этот вид ком- пьютерной графики является обязательным элементом систем автоматизации проектирования (САПР). Графика в сочетании с расчетами позволяет проводить в наглядной форме поиск оптимальной конструкции, наиболее удачной компоновки деталей, прогнозировать последствия, к которым могут привести измене- ния в конструкции. Средствами конструкторской графики можно получать как проекции и сечения, так и пространственные, трехмерные изображения.

Иллюстративная графика . Программные средства иллюстративной графики позволяют человеку использовать компьютер для произвольного рисования, черчения, подобно тому, как он это делает на бумаге с помощью карандашей, кисточек, красок, циркулей, линеек и других инструментов. Пакеты иллюстративной графики не имеют какой-то производственной направленности, поэтому они относятся к прикладному программному обеспечению общего назначения. Простейшие программные средства иллюстративной графики называются графическими редакторами.

Художественная и рекламная графика . С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоролики, видеопрезентации и многое другое. Графические пакеты для этих целей требуют больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этого класса графических пакетов является возможность создания реалистических изображений, а также «движущихся картинок».
Получение рисунков трехмерных объектов, их повороты, при- ближения, удаления, деформации - все это связано с геометрическими расчетами. Передача освещенности объекта в зависимости от положения источников света, от расположения теней, фактуры поверхности требует расчетов, учитывающих законы оптики.Получение движущихся изображений на ЭВМ называется компьютерной анимацией. Слово анимация обозначает «оживление» .


История компьютерной графики

История развития компьютерной графики началось уже в 20 веке и продолжается сегодня. Не секрет то, что именно графика способствовала быстрому росту быстродействию компьютеров.

1940-1970гг. – время больших компьютеров (эра до персональных компьютеров). Графикой занимались только при выводе на принтер. В этот период заложены математические основы.

Особенности: пользователь не имел доступа к монитору, графика развивалась на математическом уровне и выводилась в виде текста, напоминающего на большом расстоянии изображение. Графопостроители появились в конце 60-х годов и практически были не известны.

1971-1985гг. – появились персональные компьютеры, т.е. появился доступ пользователя к дисплеям. Роль графики резко возросла, но наблюдалось очень низкое быстродействие компьютера. Программы писались на ассемблере. Появилось цветное изображение (256).

Особенности: этот период характеризовался зарождением реальной графики.

1986-1990гг. – появление технологии Multimedia (Мультимедиа). К графике добавились обработка звука и видеоизображения, общение пользователя с компьютером расширилось.

Особенности: появление диалога пользователя с персональным компьютером; появление анимации и возможности выводить цветное изображение.

1991-2008гг. – появление графики нашего дня Virtual Reality. Появились датчики перемещения, благодаря которым компьютер меняет изображения при помощи сигналов посылаемых на него. Появление стереоочков (монитор на каждый глаз), благодаря высокому быстродействию которых, производится имитация реального мира. Замедление развития этой технологии из-за опасения медиков, т.к. благодаря Virtual Reality можно очень сильно нарушить психику человека, благодаря мощному воздействию цвета на неё.

Следствие использования графики

Совершенно изменилась архитектура программ. Если раньше отец программирования Вирт говорил, что любая программа это алгоритм + структура данных, то с появлением компьютерной графики на персональном компьютере программа – это алгоритм + структура данных + интерфейс пользователя (графический).

Программирование называют теперь визуальным программированием, т.е. компилятор дает большое количество диалоговых окон, где вводятся координаты и виден прообраз результата, и можно менять прообраз программы.

В 90-х годах появился стандарт изображения схем алгоритмов UML, его используют все учебники. Он учитывает объектно- ориентированные программы и способен изображать многозадачность. Имеется возможность схемы алгоритма рисовать самому из готовых стандартных форм. Т.к. все программы используют графику (меню, товарные знаки, всякие вспомогательные изображения) их можно делать в современных компиляторах, не выходя из компилятора. UML рассматривается как международный стандарт. В нем 12 групп символов (каждая из групп с определением определенной специфики) и способов взаимосвязи между ними.

Переход к графическому интерфейсу был вынужден тем фактом, что человек воспринимает 80% данных через картинку, и лишь 20% - через ум, чувства и т.д.

ВВЕДЕНИЕ

Представление данных на мониторе компьютера в графическом виде впервые было реализовано в середине 50-х годов для больших ЭВМ, применявшихся в научных и военных исследованиях. С тех пор графический способ отображения данных стал неотъемлемой принадлежностью подавляющего числа компьютерных систем, в особенности персональных. Графический интерфейс пользователя сегодня является стандартом “де-факто” для программного обеспечения разных классов, начиная с операционных систем.

Существует специальная область информатики, изучающая методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов, – компьютерная графика. Она охватывает все виды и формы представления изображений, доступных для восприятия человеком либо на экране монитора, либо в виде копии на внешнем носителе (бумага, кинопленка, ткань и прочее). Без компьютерной графики невозможно представить себе не только компьютерный, но и обычный, вполне материальный мир. Визуализация данных находит применение в самых разных сферах человеческой деятельности. Для примера назовем медицину (компьютерная томография), научные исследования (визуализация строения вещества, векторных полей и других данных), моделирование тканей и одежды, опытно-конструкторские разработки.

В зависимости от способа формирования изображений компьютерную графику принято подразделять на растровую, векторную и фрактальную.

Отдельным предметом считается трехмерная (3D) графика, изучающая приемы и методы построения объемных моделей объектов в виртуальном пространстве. Как правило, в ней сочетаются векторный и растровый способы формирования изображений.

Особенности цветового охвата характеризуют такие понятия, как черно-белая и цветная графика. На специализацию в отдельных областях указывают названия некоторых разделов: инженерная графика, научная графика, Web-графика, компьютерная полиграфия и прочие.

На стыке компьютерных, телевизионных и кинотехнологий зародилась и стремительно развивается сравнительно новая область компьютерной графики и анимации.

Заметное место в компьютерной графике отведено развлечениям. Появилось даже такое понятие, как механизм графического представления данных (Graphics Engine). Рынок игровых программ имеет оборот в десятки миллиардов долларов и часто инициализирует очередной этап совершенствования графики и анимации.

Хотя компьютерная графика служит всего лишь инструментом, ее структура и методы основаны на передовых достижениях фундаментальных и прикладных наук: математики, физики, химии, биологии, статистики, программирования и множества других. Это замечание справедливо как для программных, так и для аппаратных средств создания и обработки изображений на компьютере. Поэтому компьютерная графика является одной из наиболее бурно развивающихся отраслей информатики и во многих случаях выступает “локомотивом”, тянущим за собой всю компьютерную индустрию.

ВИДЫ ГРАФИКИ

Фрактальная графика

Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям. Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

Трехмерная графика

Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов (рис. 3). В качестве примера рассмотрим наиболее сложный вариант трехмерного моделирования – создание подвижного изображения реального физического тела.

В упрощенном виде для пространственного моделирования объекта требуется:

Спроектировать и создать виртуальный каркас (“скелет”) объекта, наиболее полно соответствующий его реальной форме;

Спроектировать и создать виртуальные материалы, по физическим свойствам визуализации похожие на реальные;

Присвоить материалы различным частям поверхности объекта (на профессиональном жаргоне – “спроектировать текстуры на объект”);

Настроить физические параметры пространства, в котором будет действовать объект, – задать освещение, гравитацию, свойства атмосферы, свойства взаимодействующих объектов и поверхностей;

Задать траектории движения объектов;

Наложить поверхностные эффекты на итоговый анимационный ролик.

Для создания реалистичной модели объекта используют геометрические примитивы (прямоугольник, куб, шар, конус и прочие) и гладкие, так называемые сплайновые поверхности. В последнем случае применяют чаще всего метод бикубических рациональных В-сплайнов на неравномерной сетке (NURBS). Вид поверхности при этом определяется расположенной в пространстве сеткой опорных точек. Каждой точке присваивается коэффициент, величина которого определяет степень ее влияния на часть поверхности, проходящей вблизи точки. От взаимного расположения точек и величины коэффициентов зависит форма и “гладкость” поверхности в целом.

Растровая графика

Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выражающее количество точек, приходящихся на единицу длины. При этом следует различать:

Разрешение оригинала;

Разрешение экранного изображения;

Разрешение печатного изображения.

Разрешение оригинала. Разрешение оригинала измеряется в точках на дюйм (dots per inch – dpi) и зависит от требований к качеству изображения и размеру файла, способу оцифровки и создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требование к качеству, тем выше должно быть разрешение оригинала.

Разрешение экранного изображения. Для экранных копий изображения элементарную точку растра принято называть пикселом. Размер пиксела варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных значений), разрешение оригинала и масштаб отображения.

Мониторы для обработки изображений с диагональю 20–21 дюйм (профессионального класса), как правило, обеспечивают стандартные экранные разрешения 640х480, 800х600, 1024х768, 1280х1024, 1600х1200, 1600х1280, 1920х1200, 1920х1600 точек. Расстояние между соседними точками люминофора у качественного монитора составляет 0,22–0,25 мм.

Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150–200 dpi, для вывода на фотоэкспонирующем устройстве 200–300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода. В случае, если твердая копия будет увеличена по сравнению с оригиналом, эти величины следует умножить на коэффициент масштабирования. Размер точки растрового изображения как на твердой копии (бумага, пленка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растрировании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется числом линий на дюйм (lines per inch – Ipi) и называется линиатурой.
Векторная графика

Если в растровой графике базовым элементом изображения является точка, то в векторной графике – линия. Линия описывается математически как единый объект, и потому объем данных для отображения объекта средствами векторной графики существенно меньше, чем в растровой графике. Линия – элементарный объект векторной графики. Как и любой объект, линия обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием (сплошная, пунктирная). Замкнутые линии приобретают свойство заполнения. Охватываемое ими пространство может быть заполнено другими объектами (текстуры, карты) или выбранным цветом. Простейшая незамкнутая линия ограничена двумя точками, именуемыми узлами. Узлы также имеют свойства, параметры которых влияют на форму конца линии и характер сопряжения с другими объектами. Все прочие объекты векторной графики составляются из линий. Например, куб можно составить из шести связанных прямоугольников, каждый из которых, в свою очередь, образован четырьмя связанными линиями. Возможно, представить куб и как двенадцать связанных линий, образующих ребра.
Представление данных графики
Форматы графических данных

В компьютерной графике применяют по меньшей мере три десятка форматов файлов для хранения изображений. Но лишь часть из них стала стандартом “де-факто” и применяется в подавляющем большинстве программ. Как правило, несовместимые форматы имеют файлы растровых, векторных, трехмерных изображений, хотя существуют форматы, позволяющие хранить данные разных классов. Многие приложения ориентированы на собственные “специфические” форматы, перенос их файлов в другие программы вынуждает использовать специальные фильтры или экспортировать изображения в “стандартный” формат.

TIFF (Tagged Image File Format). Формат предназначен для хранения растровых изображений высокого качества (расширение имени файла.TIF). Относится к числу широко распространенных, отличается переносимостью между платформами (IBM PC и Apple Macintosh), обеспечен поддержкой со стороны большинства графических, верстальных и дизайнерских программ. Предусматривает широкий диапазон цветового охвата – от монохромного черно-белого до 32-разрядной модели цветоделения CMYK. Начиная с версии 6.0 в формате TIFF можно хранить сведения о масках (контурах обтравки) изображений. Для уменьшения размера файла применяется встроенный алгоритм сжатия LZW.
и т.д.................

Первые вычислительные машины не имели отдельных средств для работы с графикой, однако уже использовались для получения и обработки изображений. Программируя память первых электронных машин, построенную на основе матрицы ламп, можно было получать узоры.

В 1961 году программист С. Рассел возглавил проект по созданию первой компьютерной игры с графикой. Создание игры ("Spacewar!") заняло около 200 человеко-часов. Игра была создана на машине PDP-1.

В 1963 году американский учёный Айвен Сазерленд создал программно-аппаратный комплекс Sketchpad, который позволял рисовать точки, линии и окружности на трубке цифровым пером. Поддерживались базовые действия с примитивами: перемещение, копирование и др. По сути, это был первый векторный редактор, реализованный на компьютере. Также программу можно назвать первым графическим интерфейсом, причём она являлась таковой ещё до появления самого термина.

В середине 1960-х гг. появились разработки в промышленных приложениях компьютерной графики. Так, под руководством Т. Мофетта и Н. Тейлора фирма Itek разработала цифровую электронную чертёжную машину. В 1964 году General Motors представила систему автоматизированного проектирования DAC-1, разработанную совместно с IBM.

В 1964 году группой под руководством Н. Н. Константинова была создана компьютерная математическая модель движения кошки. Машина БЭСМ-4, выполняя написанную программу решения дифференциальных уравнений, рисовала мультфильм "Кошечка", который для своего времени являлся прорывом. Для визуализации использовался алфавитно-цифровой принтер.

В 1968 году существенный прогресс компьютерная графика испытала с появлением возможности запоминать изображения и выводить их на компьютерном дисплее, электронно-лучевой трубке.

В конце 60-х - начале 70-х в области компьютерной графики начали работать новые фирмы. Если ранее для выполнения каких-либо работ покупателям приходилось устанавливать уникальное оборудование и разрабатывать новое программное обеспечение, то с появлением разнообразных пакетов программ, облегчающих процесс создания изображений, чертежей и интерфейсов, ситуация существенно изменилась.

За десятилетие системы стали настолько совершенны, что почти полностью изолировали пользователя от проблем, связанных с программным обеспечением.

В конце 70-х в компьютерной графике произошли значительные изменения. Появилась возможность создания растровых дисплеев, имеющих множество преимуществ: вывод больших массивов данных, устойчивое, не мерцающее изображение, работа с цветом. Впервые стало возможным получение цветовой гаммы. Растровая технология в конце 70-х стала явно доминирующей. Наиболее знаменательным событием в области компьютерной графики стало создание конце 70-х персонального компьютера. В 1977 году компания Apple создала Apple-II. Появление этого устройства вызывало смешанные чувства: графика была ужасной, а процессоры медленными. Однако персональные компьютеры стимулировали процесс разработки периферийных устройств. Конечно, персональные компьютеры развивались как важная часть машинной графики, особенно с появлением в 1984 году модели Apple Macintosh с их графическим интерфейсом пользователя.

Первоначально областью применения персонального компьютера были не графические приложения, а работа с текстовыми процессорами и электронными таблицами, но его возможности как графического устройства побуждали к разработке относительно недорогих программ как в области CAD/CAM, так и в более общих областях бизнеса и искусства. К концу 80-х программное обеспечение имелось для всех сфер применения: от комплексов управления до настольных издательств. В конце 80-х возникло новое направление рынка на развитие аппаратных и программных систем сканирования, автоматической оцифровки. Оригинальный толчок в таких системах должна была создать магическая машина Ozalid, которая бы сканировала и автоматически векторизовала чертеж на бумаге, преобразовывая его в стандартные форматы.

Однако акцент сдвинулся в сторону обработки, хранения и передачи сканируемых пиксельных изображений.

В 90-х стираются отличия между компьютерной графикой и обработкой изображения. Машинная графика часто имеет дело с векторными данными, а основой для обработки изображений является пиксельная информация. Еще несколько лет назад каждый пользователь требовал рабочую станцию с уникальной архитектурой, а сейчас процессоры рабочих станций имеют быстродействие, достаточное для того, чтобы управлять как векторной, так и растровой информацией.

Кроме того, появляется возможность работы с видео. Прибавьте аудио возможности, и вы получите компьютерную среду мультимедиа. Возрастающий потенциал персональных компьютеров и их громадное число - порядка 100 миллионов - обеспечивает устойчивый рост индустрии в отрасли. Графика все шире проникает в бизнес - сегодня фактически нет документов, созданных без использования какого-либо графического элемента.

Введение

История развития информационных технологий характеризуется быстрым изменением концептуальных представлений, технических средств, методов и сфер их применения. В современных реалиях весьма актуальным для большинства людей стало умение пользоваться промышленными информационными технологиями. Проникновение компьютеров во все сферы жизни общества убеждает в том, что культура общения с компьютером становится общей культурой человека.

Цель работы - изучить историю возникновения компьютерной графики.

Объектом изучения является компьютерная графика.

Предмет изучения: история возникновения компьютерной графики.

Задачи курсовой работы:

1) изучить и провести анализ литературы по данной теме;

2) дать понятие основным видам компьютерной графики;

3) рассмотреть возможности компьютерной графики.

История развития компьютерной графики

Возникновение компьютерной (машинной) графики

Компьютерная графика насчитывает в своем развитии не более десятка лет, а ее коммерческим приложениям - и того меньше. Андриесван Дам считается одним из отцов компьютерной графики, а его книги - фундаментальными учебниками по всему спектру технологий, положенных в основу машинной графики. Также в этой области известен Айвэн Сазерленд, чья докторская диссертация явилась теоретической основой машинной графики.

До недавнего времени экспериментирование по использованию возможностей интерактивной машинной графики было привилегией лишь небольшому количеству специалистов, в основном ученые и инженеры, занимающиеся вопросами автоматизации проектирования, анализа данных и математического моделирования. Теперь же исследование реальных и воображаемых миров через «призму» компьютеров стало доступно гораздо более широкому кругу людей.

Такое изменение ситуации обусловлено несколькими причинами. Прежде всего, в результате резкого улучшения соотношения стоимость / производительность для некоторых компонент аппаратуры компьютеров. Кроме того, стандартное программное обеспечение высокого уровня для графики стало широкодоступным, что упрощает написание новых прикладных программ, переносимых с компьютеров одного типа на другие.

Следующая причина обусловлена влиянием, которое дисплеи оказывают на качество интерфейса - средства общения между человеком и машиной, - обеспечивая максимальные удобства для пользователя. Новые, удобные для пользователя системы построены в основном на подходе WYSIWYG (аббревиатура от английского выражения «Whatyouseeiswhatyouget» - «Что видите, то и имеете»), в соответствии с которым изображение на экране должно быть как можно более похожим на то, которое в результате печатается.

Большинство традиционных приложений машинной графики являются двумерными. В последнее время отмечается возрастающий коммерческий интерес к трехмерным приложениям. Он вызван значительным прогрессом в решении двух взаимосвязанных проблем: моделирования трехмерных сцен и построения как можно более реалистичного изображения. Например, в имитаторах полета особое значение придается времени реакции на команды, вводимые пилотом и инструктором. Чтобы создавалась иллюзия плавного движения, имитатор должен порождать чрезвычайно реалистичную картину динамически изменяющегося «мира» с частотой как минимум 30 кадров в секунду. В противоположность этому изображения, применяемые в рекламе и индустрии развлечений, вычисляют автономно, нередко в течение часов, с целью достичь максимального реализма или произвести сильное впечатление.

Развитие компьютерной графики, особенно на ее начальных этапах, в первую очередь связано с развитием технических средств и в особенности дисплеев:

Произвольное сканирование луча;

Растровое сканирование луча;

Запоминающие трубки;

Плазменная панель;

Жидкокристаллические индикаторы;

Электролюминисцентные индикаторы;

Дисплеи с эмиссией полем.

Произвольное сканирование луча. Дисплейная графика появилась, как попытка использовать электроннолучевые трубки (ЭЛТ) с произвольным сканированием луча для вывода изображения из ЭВМ. Как пишет Ньюменпо-видимому, первой машиной, где ЭЛТ использовалась в качестве устройства вывода была ЭВМ Whirlwind-I (Ураган-I), изготовленная в 1950г. в Массачусетском технологическом институте. С этого эксперимента начался этап развития векторных дисплеев (дисплеев с произвольным сканированием луча, каллиграфических дисплеев). На профессиональном жаргоне вектором называется отрезок прямой. Отсюда и происходит название «векторный дисплей».

При перемещении луча по экрану в точке, на которую попал луч, возбуждается свечение люминофора экрана. Это свечение достаточно быстро прекращается при перемещении луча в другую позицию (обычное время послесвечения - менее 0.1 с). Поэтому, для того чтобы изображение было постоянно видимым, приходится его перевыдавать (регенерировать изображение) 50 или 25 раз в секунду. Необходимость перевыдачи изображения требует сохранения его описания в специально выделенной памяти, называемой памятью регенерации. Само описание изображения называется дисплейным файлом. Понятно, что такой дисплей требует достаточно быстрого процессора для обработки дисплейного файла и управления перемещением луча по экрану.

Обычно серийные векторные дисплеи успевали 50 раз в секунду строить только около 3000-4000 отрезков. При большем числе отрезков изображение начинает мерцать, так как отрезки, построенные в начале очередного цикла, полностью погасают к тому моменту, когда будут строиться последние.

Другим недостатком векторных дисплеев является малое число градаций по яркости (обычно 2-4). Были разработаны, но не нашли широкого применения двух-трехцветные ЭЛТ, также обеспечивавшие несколько градаций яркости.

В векторных дисплеях легко стереть любой элемент изображения - достаточно при очередном цикле построения удалить стираемый элемент из дисплейного файла.

Текстовый диалог поддерживается с помощью алфавитно-цифровой клавиатуры. Косвенный графический диалог, как и во всех остальных дисплеях, осуществляется перемещением перекрестия (курсора) по экрану с помощью тех или иных средств управления перекрестием - координатных колес, управляющего рычага (джойстика), трекбола (шаровой рукоятки), планшета и т.д. Отличительной чертой векторных дисплеев является возможность непосредственного графического диалога, заключающаяся в простом указании с помощью светового пера объектов на экране (линий, символов и т.д.). Для этого достаточно с помощью фотодиода определить момент прорисовки и, следовательно, начала свечения люминофора любой части требуемого элемента.

Первые серийные векторные дисплеи за рубежом появились в конце 60-х годов.

Растровое сканирование луча.

Прогресс в технологии микроэлектроники привел к тому, с середины 70-х годов подавляющее распространение получили дисплеи с растровым сканированием луча.

Запоминающие трубки.

В конце 60-х годов появилась запоминающая ЭЛТ, которая способна достаточно длительное время (до часа) прямо на экране хранить построенное изображение. Следовательно, не обязательна память регенерации и не нужен быстрый процессор для выполнения регенерации изображения. Стирание на таком дисплее возможно только для всей картинки в целом. Сложность изображения практически не ограничена. Разрешение, достигнутое на дисплеях на запоминающей трубке, такое же, как и на векторных или выше - до 4096 точек.

Текстовый диалог поддерживается с помощью алфавитно-цифровой клавиатуры, косвенный графический диалог осуществляется перемещением перекрестия по экрану обычно с помощью координатных колес.

Появление таких дисплеев с одной стороны способствовало широкому распространению компьютерной графики, с другой стороны представляло собой определенный регресс, так как распространялась сравнительно низкокачественная и низкоскоростная, не слишком интерактивная графика.

Плазменная панель.

В 1966г. была изобретена плазменная панель, которую упрощенно можно представить как матрицу из маленьких разноцветных неоновых лампочек, каждая из которых включается независимо и может светиться с регулируемой яркостью. Ясно, что системы отклонения не нужно, не обязательна также и память регенерации, так как по напряжению на лампочке можно всегда определить горит она ли нет, т.е. есть или нет изображение в данной точке. В определенном смысле эти дисплеи объединяют в себе многие полезные свойства векторных и растровых устройств. К недостаткам следует отнести большую стоимость, недостаточно высокое разрешение и большое напряжение питания. В целом эти дисплеи не нашли широкого распространения.

Жидкокристаллические индикаторы. Дисплеи на жидкокристаллических индикаторах работают аналогично индикаторам в электронных часах, но, конечно, изображение состоит не из нескольких сегментов, а из большого числа отдельно управляемых точек. Эти дисплеи имеют наименьшие габариты и энергопотребление, поэтому широко используются в портативных компьютерах несмотря на меньшее разрешение, меньшую контрастность и заметно большую цену, чем для растровых дисплеев на ЭЛТ.

Электролюминисцентные индикаторы. Наиболее высокие яркость, контрастность, рабочий температурный диапазон и прочность имеют дисплеи на электролюминисцентных индикаторах. Благодаря достижениям в технологии они стали доступны для применения не только в дорогих высококлассных системах, но и в общепромышленных системах. Работа таких дисплеев основана на свечении люминофора под воздействием относительно высокого переменного напряжения, прикладываемого к взаимноперпендикулярным наборам электродов, между которыми находится люминофор.

Дисплеи с эмиссией полем. Дисплеи на электронно-лучевых трубках, несмотря на их относительную дешевизну и широкое распространение, механически непрочны, требуют высокого напряжения питания, потребляют большую мощность, имеют большие габариты и ограниченный срок службы, связанный с потерей эмиссии катодами. Одним из методов устранения указанных недостатков, является создание плоских дисплеев с эмиссией полем с холодных катодов в виде сильно заостренных микроигл.

Таким образом, стартовав в 1950г., компьютерная графика к настоящему времени прошла путь от экзотических экспериментов до одного из важнейших, всепроникающих инструментов современной цивилизации, начиная от научных исследований, автоматизации проектирования и изготовления, бизнеса, медицины, экологии, средств массовой информации, досуга и кончая бытовым оборудованием.

Ежегодно 3 декабря отмечается Всемирный день компьютерной графики. Дата выбрана не просто так: этот день в англоязычном варианте - 3 December, то есть получается единственное в своем роде ключевое сочетание - 3December, или 3D.

Предложение о создании праздника поступило в 1998 году от американской компании Alias Systems (поглощена Autodesk), разработчика Maya, пакета трехмерного моделирования и анимации. Затем к событию подключились такие гиганты, как Adobe Systems, NVIDIA, Wacom и пр.

Вначале праздник отмечали только те, кто напрямую связан с созданием трехмерных изображений, чуть позже примкнули все прочие сферы, имеющие отношение к компьютерной графике в целом. Русскоязычное сообщество называет событие по-своему - "День 3D-шника".

Крупные отраслевые игроки всю первую декаду декабря отдают проведению всевозможных мероприятий, презентаций, семинаров и мастер-классов. Мы в свою очередь попробуем обрисовать общую картину становления и развития компьютерной графики. На полноту описания истории претендовать нет смысла, но обозначить основные вехи, предоставив поверхностный взгляд, все же можно.


1950-е годы: от текстовых изображений к графической консоли

В середине прошлого века компьютеры были не просто большими, а огромными, и драгоценное машинное время мейнфреймов использовалось исключительно для военных и промышленных нужд. Однако кому-то из заскучавших программистов пришла в голову идея эксплуатации печатающих устройств для вывода картинок и фотографий. Все просто: разница в плотности алфавитно-цифровых знаков вполне пригодна для создания изображений на бумаге - пусть даже они и получаются мозаичными, но вполне себе приемлемы для восприятия зрением на расстоянии.

ASCII-графика известна с конца XIX в., когда машинистки соревновались за лучший рисунок, выполненный на печатной машинке.
Иллюстрация: jackbrummet.blogspot.com.

В 1950 году Бенджамин Лапоски (Ben Laposky), математик, художник и чертежник, начал экспериментировать с рисованием на осциллографе. Танец света создавался сложнейшими настройками на этом электронно-лучевом приборе. Для запечатления изображений применялись высокоскоростная фотография и особые объективы, позже были добавлены пигментированные фильтры, наполнявшие снимки цветом.

Бен Лапоски рядом с осциллографом, которому он нашел необычное применение.
Иллюстрация: Sanford Museum.


Позже "осциллоны" стали цветными благодаря использованию светофильтров.
Иллюстрация: Sanford Museum.



"Визуальные ритмы и гармонии электронного абстрактного искусства" Лапоски прекрасно сочетались с аудиорядами, синтезированными Робертом Мугом (Robert Moog), пионером электронной музыки.


В 1951 году в Массачусетском технологическом институте (МТИ) для Военно-воздушных сил США было завершено строительство Whirlwind , первого компьютера с видеотерминалом (фактически осциллографом), выводящим данные в реальном масштабе времени.

Компьютер Whirlwind: память на магнитных сердечниках (слева) и операторская консоль.
Иллюстрация: Wikimedia.


В 1952 году появилась первая наглядная компьютерная игра - OXO , или крестики-нолики, разработанная Александром Дугласом (Alexander Douglas) для компьютера EDSAC в рамках кандидатской диссертации как пример взаимодействия человека с машиной. Ввод данных осуществлялся дисковым номеронабирателем, вывод выполнялся матричной электронно-лучевой трубкой.

Крестики-нолики OXO в эмуляторе EDSAC для Mac OS X.
Иллюстрация: Wikimedia.


В 1955 году родилось световое перо . На кончике пера находится фотоэлемент, испускающий электронные импульсы и одновременно реагирующий на пиковое свечение, соответствующее моменту прохода электронного луча. Достаточно синхронизировать импульс с положением электронной пушки, чтобы определить, куда именно указывает перо.

Световые перья вовсю использовались в вычислительных терминалах образца 1960-х годов.

IBM 2250. Световое перо на тот момент выступало аналогом компьютерной мыши.
Иллюстрация: Wikimedia.


В 1957 году для компьютера SEAC образца 1950-го при Национальном бюро стандартов США команда под руководством Расселла Керша (Russell Kirsch) разработала барабанный сканер, при помощи которого была получена первая в мире цифровая фотография. Изображение, на котором запечатлен трехмесячный сын ученого, получилась размером 5×5 см в разрешении 176×176 точек. Компьютер самостоятельно вычленил контуры, сосчитал объекты, распознал символы и отобразил цифровое изображение на экране осциллографа.


В 1958 году в МТИ запущен компьютер Lincoln TX-2 , впервые использующий графическую консоль. С этого момента компьютерная графика обретает настоящее приложение методик и наработок - векторный дисплей.

Рабочее место TX-2.
Иллюстрация: МТИ.


Приблизительно в это же время Джон Уитни (John Whitney), пионер компьютерной мультипликации, экспериментировал с механическим аналоговым компьютером, созданным им же самим из прибора управления зенитным огнем - предиктора Керрисона . Результатом совместной работы с дизайнером Солом Бассом (Saul Bass) стала спирографическая заставка к фильму "Головокружение" Альфреда Хичкока образца 1958 года.

Внимание! У вас отключен JavaScript, ваш браузер не поддерживает HTML5, или установлена старая версия проигрывателя Adobe Flash Player.

1960-е годы: от "Альбома" к мультипликации

Считается, что термин "компьютерная графика" придумал в 1960 году Уильям Феттер (William Fetter), дизайнер из Boeing Aircraft, хотя сам он утверждает, будто авторство принадлежит его коллеге Верну Хадсону (Verne Hudson). На тот момент возникла нужда в средствах описания строения человеческого тела, причем одновременно с высокой точностью и в пригодном для изменения виде. Для решения поставленной задачи компьютерная графика подходила идеально.



"Человек Боинга" (Boeing Man). Компьютерная графика помогала здорово экономить время и силы в проектировании самолетов.
Иллюстрация: Boeing.


И хотя первые компьютерные игры уже были реализованы, первой настоящей видеоигрой следует считать "Звездные войны" (Spacewar!). Игрушку воплотил в 1962 году студент МТИ Стив Рассел (Steve Russel) вместе с коллегами, и она запускалась на компьютере DEC PDP-1 , используя пресловутый осциллограф в качестве дисплея.


В 1963 году Айвен Сазерленд (Ivan Sutherland), другой учащийся МТИ, написал для TX-2 компьютерную программу "Альбом" (Sketchpad). Она, на тот момент по праву революционная, дала машинной графике огромный толчок вперед, послужила прообразом для систем автоматизированного проектирования (САПР), впервые описала элементы современных пользовательских интерфейсов и объектно ориентированных языков программирования.

"Альбом" посредством светового пера позволял рисовать на дисплее векторные фигуры, сохранять их, обращаться к готовым примитивам. Ключевым моментом было использование концепции "объектов" и "экземпляров": эталонный чертеж можно было многократно копировать, меняя каждый из эскизов по своему вкусу, и, если вносились правки в исходный чертеж, соответствующим образом перестраивались его дубликаты.

Айвен Сазерленд демонстрирует "Альбом" на графической консоли TX-2. За свою программу он в 1988 году получил премию имени Алана Тьюринга, которая в компьютерном мире по значимости сравнима с Нобелевской.
Иллюстрация: МТИ.


Еще одним важным изобретением "Альбома" были инструменты автоматического рисования геометрических фигур: достаточно указать местоположение и размеры, к примеру, квадрата, чтобы он был нарисован - заботиться о точных прямых углах не приходилось.

Тогда же Эдвард Зейджек (Edward Zajac), ученый из Bell Telephone Laboratories, подготовил на мейнфрейме IBM 7090 анимационный фильм "Моделирование двухгироскопной гравитационной управляющей системы", в котором показал пространственное перемещение спутника, вращающегося на орбите Земли.

Внимание! У вас отключен JavaScript, ваш браузер не поддерживает HTML5, или установлена старая версия проигрывателя Adobe Flash Player.

Параллельно Кен Ноултон (Ken Knowlton), сотрудник той же компании, придумал BeFlix (от Bell Flicks), первый специализированный язык компьютерной анимации на основе Фортрана. Он, работая с "графическими примитивами" вроде рисования линии, копирования области, заполнения зоны, масштабирования и пр., позволял создавать изображения с восемью полутонами и разрешением 252×184 точек.

В период 1965-1971 годов на основе BeFlix режиссером-экспериментатором Стэном Вандербиком (Stan VanDerBeek) была создана серия мультипликаций Evans & Sutherland . Ее сформировали нам уже известный Айвен Сазерленд и Дэвид Эванс (David Evans), вплотную изучающий аспекты визуального взаимодействия компьютера с человеком.

Техническое оснащение созданной лаборатории, всесторонне сфокусировавшейся на вопросах создаваемых компьютерами изображений (CGI) - в том числе оборудования реального времени, ускорения трехмерной графики и создания принтерных языков, было достаточно мощным, чтобы привлечь целую когорту перспективных специалистов.

Так, среди примкнувших оказались Эдвин Кэтмелл (Edwin Catmull), который понял, что мультипликацию следует переложить на плечи компьютеров, Джон Уорнок (John Warnock), сооснователь Adobe Systems и разработчик концепции революционного в издательском деле языка описания страниц PostScript, Джеймс Кларк (James Clark), совместно основавший Silicon Graphics и Netscape Communications.

Эд Кэтмелл, его считают отцом компьютерной мультипликации. Сейчас он занимает пост президента Walt Disney и Pixar, мирового лидера по практическому внедрению компьютерной графики в киноиндустрию.
Иллюстрация: Flickr/Jeff Heusser.

В 1968 году в СССР снят мультфильм "Кошечка" , ставший первым, в котором появился анимированный компьютером персонаж.

Группа специалистов под руководством математика Николая Константинова обратилась к вычислительной машине БЭСМ-4 , которая с достаточной степенью реализма моделировала движения кошки через систему дифференциальных уравнений второго порядка. Каждый кадр выводился на печатающее устройство, затем все они были объединены в ленту.

Внимание! У вас отключен JavaScript, ваш браузер не поддерживает HTML5, или установлена старая версия проигрывателя Adobe Flash Player.

Во второй части погружения в историю компьютерной графики мы разберем вопросы алгоритмов.!